3D Printing in the FIRST Community

IN FIRST FORUMS

Rufus & Rachel Cochran

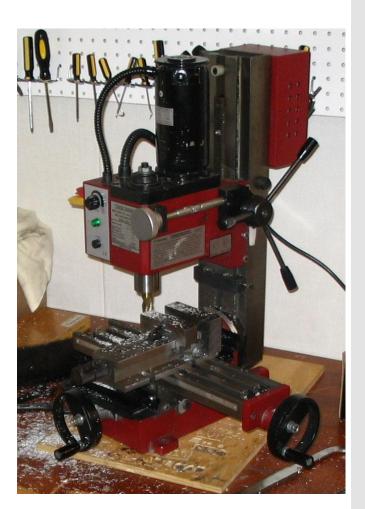
14-OCT-2017

Hello, I am Rufus Cochran

- 447 student from 2001 to 2006
 - From Co-Operation FIRST to Aim High
- FIRST mentor for a decade+
 - 447, 5010, and 6721
- Rose-Hulman Alumni
 - Computer Engineering
 - Mechatronics
- Controls Engineer at Roche Diabetes Care
 - High Speed Vision Systems
- Started a BattleBots team
 - denkbots.com

Overview of Presentation

- Introduction to 3D Printing
- History of 3D Printing
- Why 3D Printing is Important
- The Design Process and 3D Printing
- FIRST and 3D Printing
- Open Hardware and You

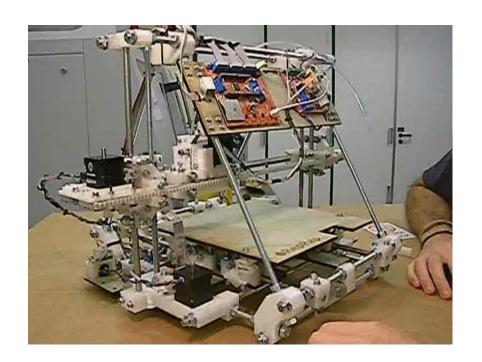

Warm Up Questions

- Who has heard of 3D Printing?
- Who has a 3D Printer readily available?
- Who owns a 3D Printer?
- <u>Note</u>: The answers have changed drastically over the last four years.
- Can you think of anything you could have 3D printed on your robot last year?
 - Write ideas down as they come to you, we will share at the end of the show

What is 3D Printing?

Wikipedia

- Additive Manufacturing process for printing a three-dimensional object.
- Production had classically been done by casting, fabrication, stamping, and machining; transforming a mass of raw material into a desired shape layer by layer was associated with processes that removed material (rather than adding it), such as CNC milling.

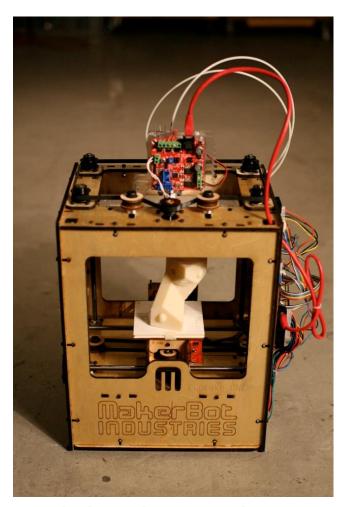


(Not a 3D Printer)

Why is 3D Printing?

Der Spiegel

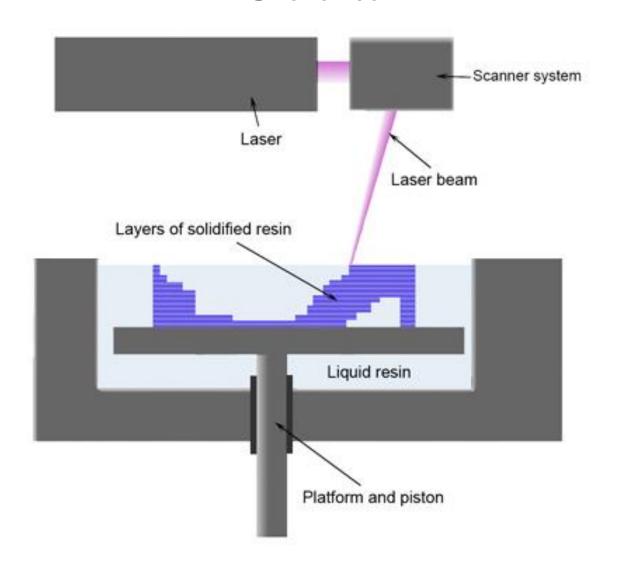
 "Assembling, screwing together, adhering, welding -- all these processes are rendered obsolete when even the most complex shapes can be produced by a single machine using this casting technique."



(3D Printer? Or Siege-Engine?)

How does 3D Printing?

Main Types of 3D Printing


- SLA
 - StereoLithography Apparatus
- SLS
 - Selective Laser Sintering
- FDM
 - Fused Deposition Modeling

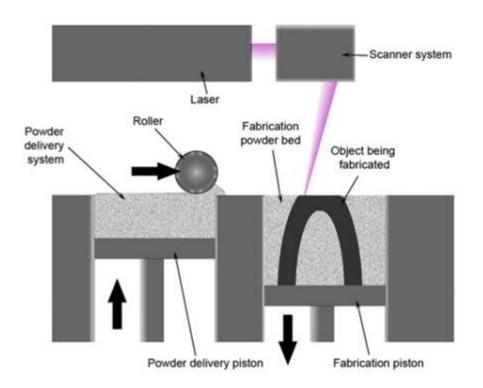
(Ok, here is a 3D Printer)

Types of 3D Printing (SLA)

StereoLithography Apparatus

Types of 3D Printing (SLA)

StereoLithography Apparatus


- Creates layers by curing a photo-reactive resin with a UV laser
- Pro:
 - Quick print time
- · Con:
 - Brittle prototype
 - Expensive in comparison to FDM.
 - Roughly \$149 for 1 liter
 - Roughly the equivalent of 1 kg of FDM
 - https://all3dp.com/fdm-vs-sla/
 - Printers start at \$500 (Wanhao Duplicator 7)

SLA (skip to 1m)

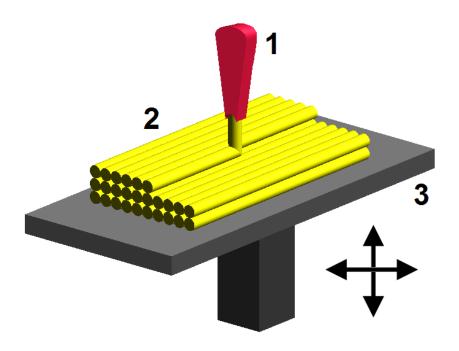
https://youtu.be/enJq2PquuPE

Types of 3D Printing (SLS)

Selective Laser Sintering

Types of 3D Printing (SLS)

Selective Laser Sintering


- Uses a laser to sinter powdered material (typically metal), by aiming laser at points, binding the material together to create a solid structure
- Pro:
 - Wide range of material
- · Con:
 - Longer print time
 - Cheapest current printer is ~\$10k

SLS (DMLS)

https://youtu.be/VImKhUD-8hk

Types of 3D Printing (FDM)

Fused deposition modeling

Fused deposition modelling:

- 1 Nozzle ejecting molten plastic
- 2 Deposited material (modeled part)
- 3 Controlled movable table

Types of 3D Printing (FDM)

Fused deposition modeling

- Creates object by laying down material in layers
- Pro:
 - Quick print time
 - Inexpensive
- Con:
 - Bridge material required for hanging edges

FDM

https://youtu.be/vsBVU8PMN_c

History of 3D Printing

Roots of the Technology

- 1972 Mitsbushi motors proposes photo-hardened materials be used to produce layered parts
- 1981 Kodama publishes first account of working photopolymer rapid prototyping system
- 1984 Charles Hull invents <u>stereolithography</u> (SLA)

Origin of the Methods

- **1991** Stratasys produces the world's first <u>FDM (fused deposition modelling)</u> machine.
- 1992 3D systems produce the first SLA 3D Printer machine
- 1992 DTM produces first <u>SLS (selective laser sintering)</u> machine.

History of 3D Printing

Groundwork for Consumer Applications

- 2000 The first 3D inkjet printer
- 2000 The first multicolour 3D
- **2001** The first desktop 3D printer

The Revolution Begins

- 2005 The Reprap project is founded; intended as a democratization of 3D printing
- 2008 The first biocompatible FDM material
- 2008 The first 3D prosthetic leg is produced
- 2008 Makerbot's <u>Thingiverse</u> launches a website for free 3D model file sharing

History of 3D Printing

Recent Steps Forward

- 2009 The first 3D printed blood vessel
- 2011 The first 3D printed car
- 2012 The first 3D printed jaw is produced
- 2013 Cody Wilson of <u>Defense Distributed</u> is asked to remove designs for the world's first 3D printed gun and the domain is seized.

Future of 3D Printing

The Future is Now

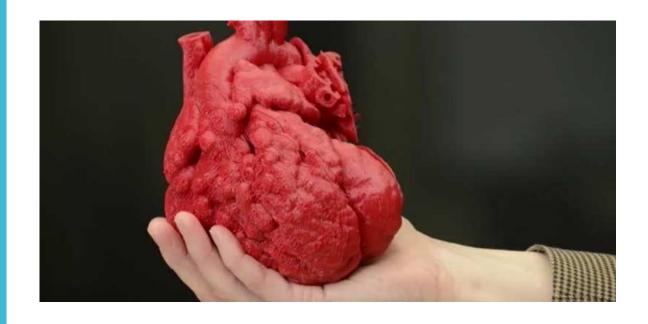
- "The future is already here it's just not very evenly distributed." – William Gibson
- The initial excitement has decreased significantly
- Many teams have a 3D printer or access to one
 - School district, Sponsor, etc.
- Why is it still important to focus on 3D printing?

The Future is Now

Applications in Medicine

- 3D printing sterile surgical tools with PLA at 1/10th the cost of stainless steel instruments
 - University of Arizona
- 3D printed embryonic stem cells
 - Heriot-Watt University in Edinburgh
 - basis for 3D printing organs in future
- 3D printing skin grafts for burn victims
 - James Yoo at Wake Forest Institute
- 3D printed human cell heart patches for heart attack survivors
 - University of Rostock in Germany, Harvard Medical Institute and the University of Sydney

3D Printing Sterile Surgical Tools



The Future is Now

Applications in Medicine

- 3D printing sterile surgical tools with PLA at 1/10th the cost of stainless steel instruments
 - University of Arizona
- 3D printed embryonic stem cells
 - Heriot-Watt University in Edinburgh
 - basis for 3D printing organs in future
- 3D printing skin grafts for burn victims
 - James Yoo at Wake Forest Institute
- 3D printed human cell heart patches for heart attack survivors
 - University of Rostock in Germany, Harvard Medical Institute and the University of Sydney

3D Printed Human Cell Heart Patches

3D Printing Mice Ovaries at Northwestern University

The Future is Now

- Joint project between Fienberg School of Medicine and McCormick School of Engineering
- Goal is to give young female cancer patients ability to have children after treatment
- Engineers and doctors paired up
- Success in mice with 3d-printed ovaries giving birth to healthy mice pups

3D Printing Mice Ovaries at Northwestern University

The Future is Now

https://youtu.be/_5whpjlPO6Q

The Future is Now

Wearable Art

- Dita Von Teese's 3D printed gown
 - first of its kind
 - designed by Michael Schmidt and 3D modeled by architect Francis Bitonti to be 3D
 - printed in Nylon by Shapeways
 - fully articulated gown based on the Fibonacci sequence
 - assembled from 17 pieces, dyed black, lacquered and adorned with over 13,000 Swarovski crystals
- Aura Pendant
 - personalized jewelry
 - marketing genius

Dita Von Teese's 3D Printed Gown

The Future is Now

Wearable Art

- Dita Von Teese's 3D printed gown
 - first of its kind
 - designed by Michael Schmidt and 3D modeled by architect Francis Bitonti to be 3D
 - printed in Nylon by Shapeways
 - fully articulated gown based on the Fibonacci sequence
 - assembled from 17 pieces, dyed black, lacquered and adorned with over 13,000 Swarovski crystals
- Aura Pendant
 - personalized jewelry
 - marketing genius

Aura Pendant

The Future is Now

https://youtu.be/h_OXo6zZer4

Masks for Corpses, because Halloween

The Future is Now

- Ministry of Civil Affairs in China
- Reconstruct faces for people that have died in traumatic accidents causing facial deformities
- Babaoshan Funeral Home in Beijing has become the first in the province to use 3D printing to speed up facial reconstruction on corpses
- Instead a mortician spending a week on facial reconstruction, a mask can be 3d printed in 12 hours

Masks for Corpses

The Future is Now

Apis Cor 3D Printer

- Invented by Russian Engineer Nikia Chen Yun Tai
 - 16.4 ft by 5 ft footprint
 - Weighs 2.5 tonnes
 - Assembled in 30 minutes
 - Maximum printing zone 630 sq ft
 - 409 sq ft bungalow in Russia
- Russia's First 3d Printed Home
 - 24 hours
 - Cost \$10,134
- Challenges
 - Startup costs of 3d printer, temperature of concrete
- Applications
 - Peace Corp, Doctors Without Borders, FEMA, Mars no, not yet, we're almost there

Apis Cor 3D Printer

The Future is Now

https://youtu.be/8z-iebHRxJk

The Future is Now

3D printed house on Mars (sort of)

- Team at MIT
- "Digital Construction Platform"
- Team used certain requirements to make it practical (requirements based design!!!)
- Robot has to use materials found on site like ice or dirt
 - This makes it useful in remote areas, LIKE MARS
- Design Requirements
 - Robot has to be moved by people
 - Robot has to have a long arm to lift heavy things
 - Has to perform finely detailed tasks
 - Has to be able to integrate into existing construction practices and use existing materials
- Robot is essentially a giant hydraulic arm on caterpillar treads

The Future is Now

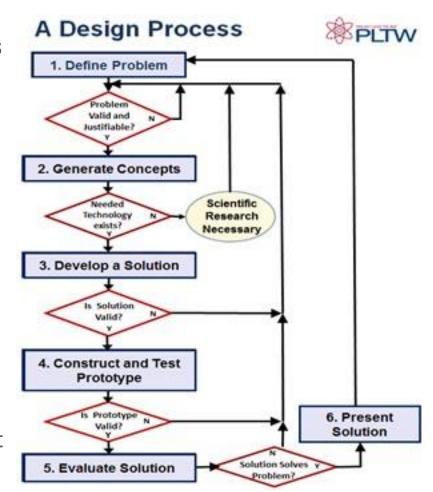
3D printed house on Mars (sort of)

- On the end of the arm is a one-fingered hand attached, which can move more freely and is responsible for finemotor tasks
- Can be fitted with a range of different tools, including a foam insulation gun, a welding attachment, a "thermoplastic extruder" that squirts out melted plastic, a glorified squirt gun, and even a simple bucket
- Equipped it with solar panels and battery packs to power an electrical drive system
- Weighs 8100 lbs
- Initial costs \$250,000
- Used expanding foam that sets in 30 seconds
- Final structure 12 ft high x 50 ft diameter
- 13 hours to build largest 3d printed structure ever

3D printed house on Mars (sort of)

The Future is Now

https://youtu.be/8zt_3Gs1ksg


Why 3D Printing?

- Many areas of expertise have to work together for 3D printing to happen and to expand
 - Material Science
 - Mechanical Engineering
 - Electrical Engineering
 - Programming
 - Mechatronics
 - Drafting/3D Modeling
 - Biomedical Engineering
- Multi-disciplinary and cross-functional teamwork
 - Like FIRST!

But what can 3D Printing do for me?

The Design Process

- The most
 expensive and
 time consuming
 part of the design
 process, is
 prototyping
- Students can see their ideas almost instantly materialize in front of them, revise, and retry

But I bet it costs over \$9,000?

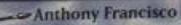
- \$20 for 1kg spool of PLA
- \$350 to \$600 for very capable 3D Printers
- Monoprice MP Select Mini 3D printer V2, a \$219.99 fully assembled 3D printer. (Build area only 4.7" cubed)
- Doesn't your school already have a 3D Printer?

But I can't afford/use that CAD program.

- What are the benefits of using CAD?
- There are several free CAD softwares
- Does your school PLTW?
 - Your kids might already know, and have access to, CAD software
- hackaday.com has free tutorials for:
 - OpenSCAD
 - AutoCAD
 - Blender
 - SketchUp
 - Autodesk 123D
 - FreeCAD
 - Solidworks
- Autodesk Fusion 360

Intro 3D Printing exercises for teams

- Have students design a team keychain
- Print out all the different designs
- Figure out what doesn't work, why it doesn't work, and iterate the designs


- Students make giveaways for competition
- Students learn how to design parts to be 3D printed
- Team learns strengths and limitations of 3D parts

Draw a card.

Flashback 2 6 (You may cast this card from your graveyard for its flashback cost. Then exile it.)

"Either I know just the spell I need, or I'm about to."

w & o 1991-2011 Witards of the Coast LLC 83/264

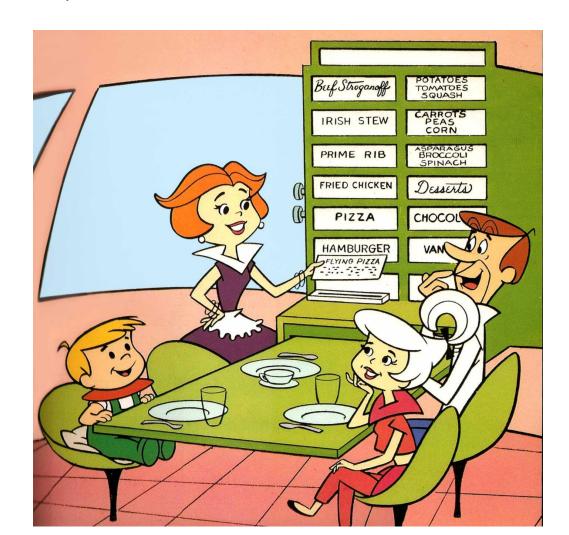
So how do we leverage this technology to improve the FIRST community?

OPEN HARDWARE

- Remember thingiverse?
- We build an open repository of robotics (FRC, FTC, botball, VEX, etc.) focused parts

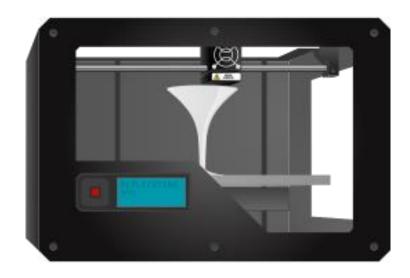
COMPETITION

- If there was an award/prize for 3D printed parts at the district events, would you apply?
- If all of the parts submitted went into the database above for everyone to use, would you use it?


Some Notes

- AndyMark has 3D Parts
- A team 3D printed their whole chassis
- What if you downloaded your kit of parts?
- Any part made in CAD software can be exported to an STL file
- Then software like Cura and Slic3r can turn it into reprap instructions for any 3D printer

Remember those parts you wrote down?


- Share your ideas
- What if you had designed and shared those parts?
- What if other teams had already designed and shared those parts?

rufus.cochran@gmail.com Presentation at denkbots.com

Questions?

